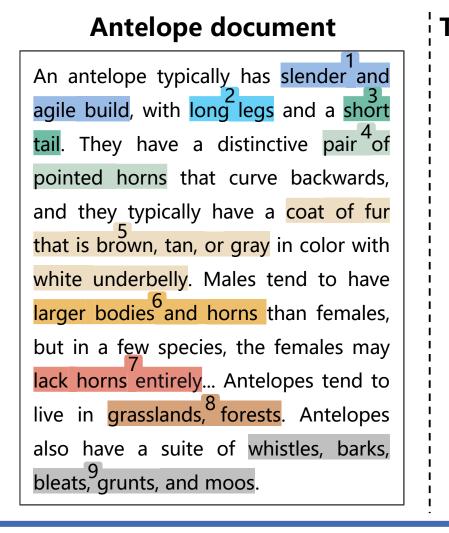


GitHub

Visual-Semantic Decomposition and Partial Alignment for Document-based Zero-Shot Learning

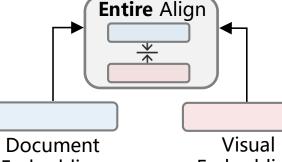

Xiangyan Qu, Jing Yut, Keke Gai, Jiamin Zhuang, Yuanmin Tang, Gang Xiong, Gaopeng Gou, Qi Wu

Motivation

Document-based Zero-Shot Learning (ZSL)

- ZSL aims to identify unseen classes by training a set of seen classes. •
- Document-based ZSL uses category-level text corpora from Wiki as auxiliary information, transferring knowledge by shared descriptions.

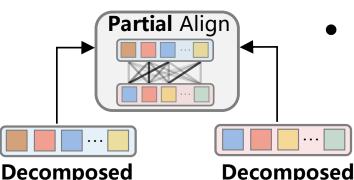
Partial Association between Images and Documents


The matching information diverse image content, noisy

document, exhaustive description

Semantics in the document may

Previous Work: Entire Align


Existing methods align the entire semantics of a \bullet document with images to transfer knowledge.

Embedding Embedding Document

They disregard that semantics is not equivalent

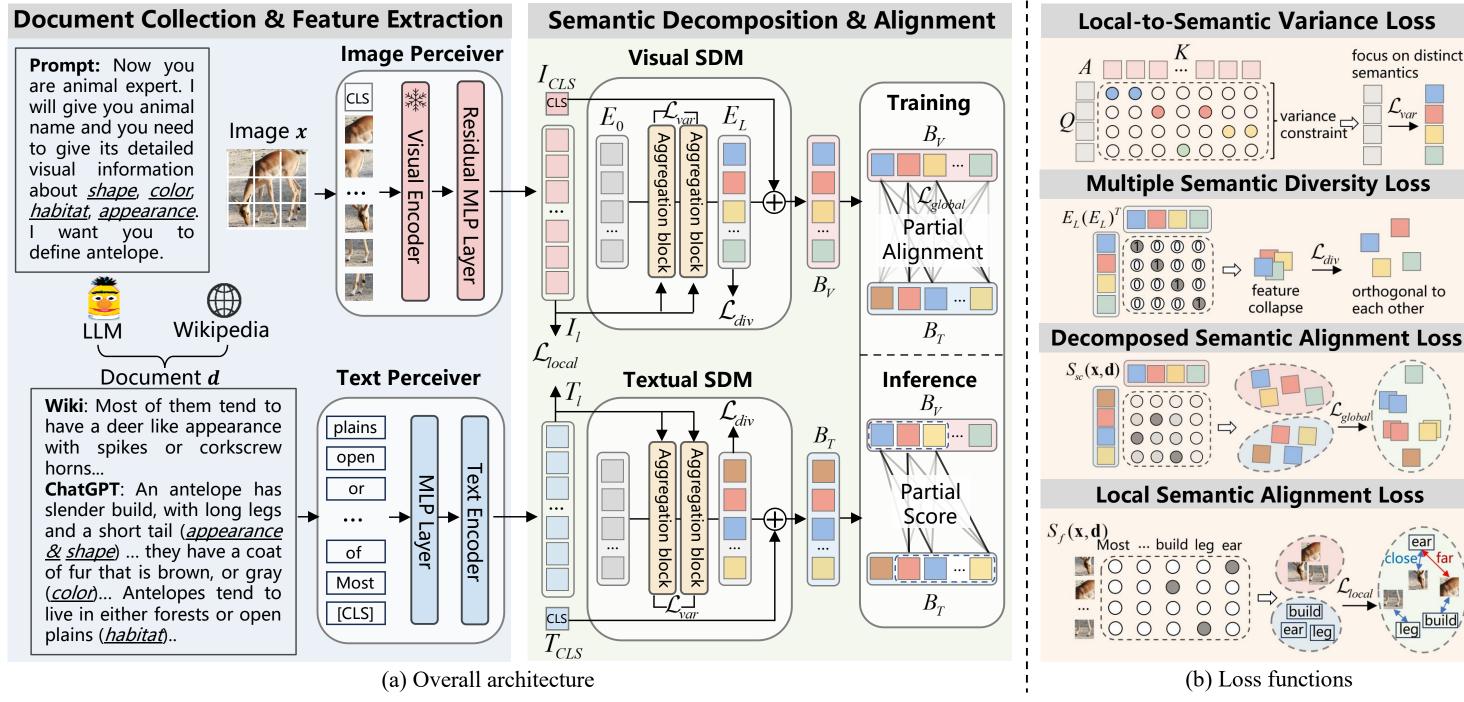
between them, resulting in a suboptimal alignment.

Our EmDepart: Partial Align

• In contrast, we extract multi-view semantic concepts from documents and images and align the matching rather than entire concepts.

→ ← 4 5 8

partially be reflected in the image. Document Embeddings Visual Embeddings


Distinct images capture varying semantics within the document.

Moreover, two losses are proposed to solve issues of information redundancy caused by feature collapse.

Our Solutions

An overview of our EmDepart, which contains an image perceiver, a text perceiver, and visual and textual semantic decomposition modules.

This process introduces a set of learnable tokens and cross-attention mechanisms.

$$\mathbf{E}_t = \operatorname{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{r_h}}\right)\mathbf{V}\mathbf{W}_o + \mathbf{E}^{t-1},$$

 $\mathbf{E}_{t} = \mathrm{MLP}(\mathbf{E}_{t}) + \mathbf{E}_{t}.$

 $\mathcal{L}_{var} = \frac{1}{2} \Big(C(\mathbf{A}_T) + C(\mathbf{A}_V) \Big).$

 $\mathcal{L}_{div} = \frac{1}{2k^2} (\|\mathbf{M}_T - \mathbb{I}\|_2 + \|\mathbf{M}_V - \mathbb{I}\|_2).$

• In the last, we concatenate the output with

global feature to maintain small set variance. $\mathbf{B}_{V} = \text{LayerNorm}(\mathbf{E}_{L} + [\mathbf{I}_{CLS}]^{*k}).$

Distinct Semantic Information Learning

To solve the information redundancy caused by feature collapse (multiple embeddings with a slight variance), we introduce two losses:

- \mathcal{L}_{var} : encourage each view embedding $C(\mathbf{A}_{V}) = \sum_{i=1}^{t} \sum_{j=1}^{n} \max(0, \gamma - \sqrt{Var(\mathbf{a}_{tj}) + \epsilon}),$ to focus on unique local information.
- \mathcal{L}_{div} : penalize each view embedding orthogonal to others. Partial Semantic Alignment

Document Collection: Wiki + LLMs

- Collecting category documents from encyclopedia (*e.g.,* Wikipedia)
- Enriching less-described document by Large Language Models (LLMs)

Visual-Semantic Decomposition

Visual and textual SDM aggregate information and decompose them to generate multi-view semantic embeddings:

We assigns distinct weights to every document-image embedding pair based on similarity to model the partial association.

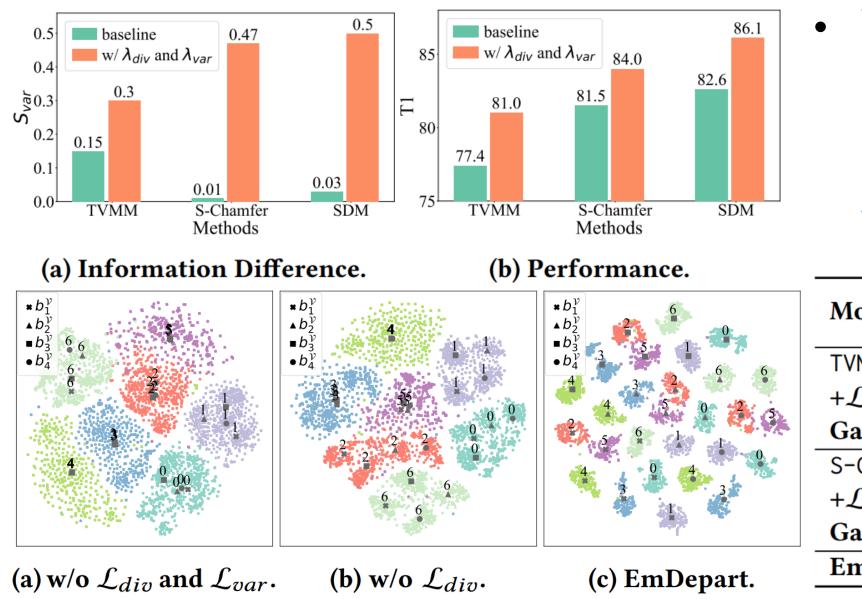
$$LSE(\mathbf{b}_{T}, \mathbf{B}_{V}) = \log\left(\sum_{\mathbf{b}_{V} \in \mathbf{B}_{V}} e^{\cos(\mathbf{b}_{T}, \mathbf{b}_{V})}\right), \quad S_{sc}(\mathbf{x}, \mathbf{d}) = \frac{1}{2k}\left(\sum_{\mathbf{b}_{T} \in \mathbf{B}_{T}} LSE(\mathbf{b}_{T}, \mathbf{B}_{V}) + \sum_{\mathbf{b}_{V} \in \mathbf{B}_{V}} LSE(\mathbf{b}_{V}, \mathbf{B}_{T})\right),$$
$$\mathcal{L}_{global} = -\log\frac{\exp(S_{sc}(\mathbf{x}, \mathbf{d}) / \tau)}{\sum_{\mathbf{d}' \in \mathcal{D}^{s}} \exp(S_{sc}(\mathbf{x}, \mathbf{d}') / \tau)}, \quad \mathcal{L}_{local} = -\log\frac{\exp(S_{f}(\mathbf{x}, \mathbf{d}))}{\sum_{\mathbf{d}' \in \mathcal{D}^{s}} \exp(S_{f}(\mathbf{x}, \mathbf{d}'))}.$$
$$\bullet \text{ Final Loss: } \mathcal{L} = \mathcal{L}_{global} + \lambda_{local}\mathcal{L}_{local} + \lambda_{var}\mathcal{L}_{var} + \lambda_{div}\mathcal{L}_{div}.$$

Experiments

Achieved SOTA in document-based ZSL

Our EmDepart improves performance by 6.0% and 5.8% on average across all metrics under Wiki and Wiki+LLM documents.

Model		Zero-Shot Learning			Generalized Zero-Shot Learning								
	Auxiliary Information	AWA2	CUB	FLO	AWA2			CUB			FLO		
		T1	T1	T1	U	S	Н	U	S	Η	U	S	Н
GloVe [42]	CLSN	52.1	20.4	21.6	42.1	75.3	54.0	16.2	43.6	23.6	14.4	88.3	24.8
GloVe [42]	Wiki	61.6	29.0	25.8	49.5	78.1	60.6	23.8	62.6	34.5	14.7	91.0	25.3
LongFormer [6]	Wiki	44.2	22.6	8.8	41.6	81.8	55.2	19.9	41.0	26.8	8.8	89.8	16.0
MPNet [48]	Wiki	61.8	25.8	26.3	58.0	76.4	66.0	20.6	44.3	28.2	22.2	96.7	36.1
TF-IDF [45]	Wiki	46.4	39.9	34.0	29.6	87.6	44.2	29.0	52.1	37.3	28.9	94.8	44.3
VGSE [63]	CLSN+IMG	69.6	37.1	-	56.9	82.8	67.4	27.6	70.6	39.7	-	-	-
I2DFormer [38]	Wiki	76.4	45.4	40.0	66.8	76.8	71.5	35.3	57.6	43.8	35.8	91.9	51.5
I2MVFormer[37]	Wiki	73.6	42.1	41.3	66.6	82.9	73.8	32.4	63.1	42.8	34.9	96.1	51.2
EmDepart (Ours)	Wiki	81.4 ^{+5.0}	50.2 ^{+4.8}	47.2 ^{+5.9}	76.0	87.8	81.5 ^{+7.7}	42.6	56.3	48.5 ^{+4.7}	42.7	97.6	59.5 <mark>+8.0</mark>
I2DFormer [38]	Wiki+LLM	77.3	47.0	43.0	68.6	77.4	72.7	38.5	59.3	46.7	40.4	80.1	53.8
I2MVFormer [37]	Wiki+LLM	79.6	51.1	46.2	75.7	79.6	77.6	42.5	59.9	49.7	41.6	91.0	57.1
EmDepart (Ours)	Wiki+LLM	86.1 ^{+6.5}	52.8 ^{+1.7}	53.3 ^{+7.1}	81.4	88.5	84.8 ^{+7.2}	45.0	61.4	51.9 ^{+2.2}	52.3	94.4	67.3 ^{+10.}

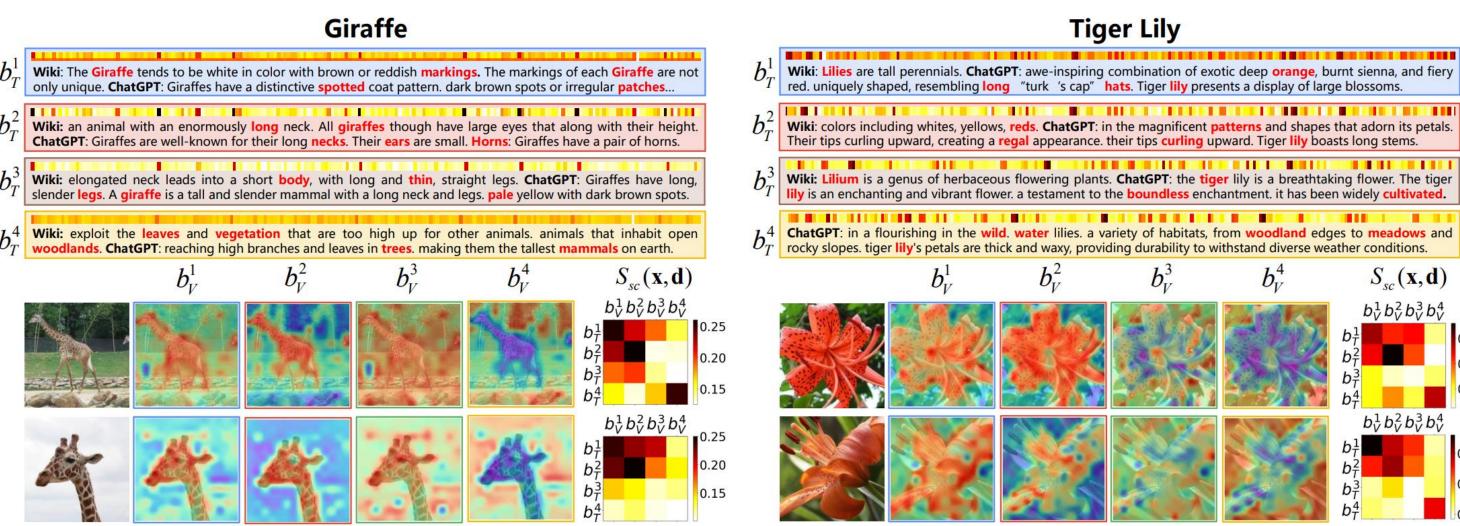

Ablation Studies: Model and Document

Ablation on Modules				Ablation o	n Diffe	erent	Docum	ents
Model	AWA2 T1	CUB T1	FLO T1	Auxiliary	AW		FLO	
a) full model	86.1	52.8	53.3	Information	T1	Η	T1 F	[
Ablation on Loss Function				Wiki	81.4	81.5	47.2 5	9.5
b) w/o \mathcal{L}_{local}	85.8	45.9	41.7	Wiki+GPT3[7]	$82.3_{\pm 0.45}$	$82.2_{\pm 0.61}$	$53.2_{\pm 0.78}$ 6	$5.5_{\pm 0.87}$
c) w/o \mathcal{L}_{div}	83.5	47.7	41.5	Wiki+LLaMa2[51]	$82.1_{\pm 0.37}$	$82.8_{\pm 0.27}$	$49.5_{\pm 0.65}$ 6	$2.8_{\pm 0.61}$
d) w/o \mathcal{L}_{var}	85.5	50.1	49.9	Wiki+ChatGPT[20]	86.1 _{±0.16}	$84.8_{\pm 0.29}$	53.3 $_{\pm 0.41}$ 6	$7.3_{\pm 0.82}$
e) w/o \mathcal{L}_{div} + \mathcal{L}_{var}	82.6	47.5	39.3					
f) w/o $\mathcal{L}_{local} + \mathcal{L}_{div} + \mathcal{L}_{var}$	80.1	45.4	37.2	Comput	otion	Cast	A nahyai	-
Ablation on Score Function				Comput	ation	COST	Analysis	
g) w/o Partial Score in Eq.12	85.7	52.6	53.0		Paran	ns Train	Inferenc	e FLO
h) w/ average distance in Eq.7	80.0	39.4	45.7	Model	$(\times 10^{6}$			(H)
i) w/ maximum distance in Eq.7	82.2	45.4	44.8	I2DFormer [38]	2.18	/ (/	4.7	53.8
Ablation on Module								
j) w/o global feature in Eq.3	71.6	37.7	39.6	I2MVFormer [37]	3.86	0.80	5.3	57.1
k) w/o SDM	79.7	46.0	45.1	EmDepart w/o SD	M 1.52	0.67	4.6	57.9
 w/o residual connection 	81.4	49.7	48.3	EmDepart	3.10	0.98	5.2	67.3

Auxiliary	AW	VA2	FLO		
Information	T1	Η	T1	Η	
Wiki	81.4	81.5	47.2	59.5	
Wiki+GPT3[7]	$82.3_{\pm 0.45}$	$82.2_{\pm 0.61}$	$53.2_{\pm 0.78}$	$65.5_{\pm 0.87}$	
Wiki+LLaMa2[51]	$82.1_{\pm 0.37}$	$82.8_{\pm 0.27}$	$49.5_{\pm 0.65}$	$62.8_{\pm 0.61}$	
Wiki+ChatGPT [20]	86.1 $_{\pm 0.16}$	$84.8_{\pm 0.29}$	53.3 $_{\pm 0.41}$	$67.3_{\pm 0.82}$	
Compu	tation	Cost	Analys	sis	
•	tation Parai		Analys		
Compu Model		ns Train	Inferen	nce FLC	

 $S_{c}(\mathbf{x},\mathbf{d})$

Analysis of Feature Collapse



We improve previous methods performance and increase the information difference among view embeddings.

Model	AW	/A2	CU	J B	FLO		
Model	T1	Η	T1	Η	T1	Η	
TVMM [33]	77.4	74.4	41.6	43.1	42.3	54.2	
$+\mathcal{L}_{var} + \mathcal{L}_{div}$	81.0	77.5	45.6	47.4	46.8	59.5	
Gain	+3.6	+3.1	+4.0	+4.3	+4.5	+5.3	
S-Chamfer [29]	81.5	80.6	45.6	45.2	43.5	57.3	
$+\mathcal{L}_{var} + \mathcal{L}_{div}$	84.0	82.9	49.1	49.9	48.9	63.6	
Gain	+2.5	+2.3	+3.5	+4.7	+5.4	+6.3	
EmDepart(Ours)	86.1	84.8	52.8	51.9	53.3	67.3	

Partial Association Visualization

It contains the visual-semantic decomposition to offer basic concepts and partial semantic alignment according to the matching information.

